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Representation Learning for Graphs

Telecom Safety Transportation Industry Smart cities

(Edge) deployment

Deep Learning System

Intermediate Representation: Graphs

?
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Problem Definition

▌ Input: Finite collection of graphs

● Nodes of any two graphs are not necessarily in correspondence
● Nodes and edges may have attributes (discrete and continuous)

▌Problem: Learn a representation for classification/regression

▌ Example: Graph classification problem

…

[                    ] = ?class
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State of the Art: Graph Kernels

▌Define kernel based on substructures
● Shortest paths
● Random walks
● Subtrees
● ...

▌ Kernel is similarity function on pairs of graphs
● Count the number of common substructures

▌Use graph kernels with SVMs
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Patchy: Learning CNNs for Graphs
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Patchy: Learning CNNs for Graphs

node sequence selection (w=6 nodes)

neighborhood normalization (exactly k=4 nodes)
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Patchy: Learning CNNs for Graphs

neighborhood normalization

● normalized neighborhoods serve as receptive fields
● node and edge attributes correspond to channels

Convolutional architecture
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Node Sequence Selection

▌We use centrality measures to generate the node sequences
▌Nodes with similar structural roles are aligned across graphs

node sequence selection

A: Betweenness centrality   B: Closeness  
centrality 
C: Eigenvector centrality     D: Degree centrality
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▌ Simple breadth-first expansion until at least k nodes added, 
or no additional nodes to add

Neighborhood Assembly

neighborhood assembly 
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▌Nodes of any two graphs should have similar position in the 
adjacency matrices iff their structural roles are similar

▌Result: For several distance measure pairs 
it is possible to efficiently compare labeling
methods without supervision

▌ Example: ||A – A’||1  and edit distance
on graphs

Graph Normalization Problem
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Graph Normalization

Distance to root node
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Graph Normalization

Distance to root node

Centrality measures, etc.
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Graph Normalization

Distance to root node

Centrality measures, etc.

Canonicalization (break ties)
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Computational Complexity

▌ At most linear in number of input graphs
▌ At most quadratic in number of nodes for each graph

(depends on maximal node degree and centrality measure)
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Convolutional Architecture
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Convolutional Architecture
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Experiments - Graph Classification

▌ Finite collection of graphs and their class labels

● Nodes of any two graphs are not necessarily in correspondence
● Nodes and edges may have attributes (discrete and continuous)

▌ Learn a function from graphs to class labels

…

[                    ] = ?class

class = 1 class = 0 class = 1
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Experiments - Convolutional Architecture
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Classification Datasets

▌ MUTAG: Nitro compounds where classes indicate mutagenic 
effect on a bacterium (Salmonella Typhimurium)

▌ PTC: Chemical compounds where classes indicate 
carcinogenicity for male and female rats

▌ NCI: Chemical compounds where classes indicate activity 
against non-small cell lung cancer and ovarian cancer cell lines

▌ D&D: Protein structures where classes indicate whether 
structure is an enzyme or not 

▌ ...
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▌Q: How efficient and effective compared to graph kernels?
▌ Apply Patchy to typical graph classification benchmark data

Experiments - Graph Classification
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Experiments - Visualization

▌Q: What do learned edge filters look like?
▌ Restricted Boltzmann machine applied to graphs
▌ Receptive field size of hidden layer: 9

small instances of graphs weights of hidden nodes

graphs sampled from RBM
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Discussion

▌ Pros:
● Graph kernel design not required
● Outperforms graph kernels on several datasets (speed and accuracy)
● Incorporates node and edge features (discrete and continuous)
● Supports visualizations (graph motifs, etc.)

▌Cons:
● Prone to overfitting on smaller data sets (graph kernel benchmarks)
● Shift from designing graph kernels to tuning hyperparameters
● Graph normalization not part of learning

code to be released: patchy.neclab.eu


