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Problem Definition

I Input: Finite collection of graphs

e Nodes of any two graphs are not necessarily in correspondence
e Nodes and edges may have attributes (discrete and continuous)

| Problem: Learn a representation for classification/regression

| Example: Graph classification problem

class| @gg ]=>
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State of the Art: Graph Kernels

| Define kernel based on substructures
e Shortest paths
e Random walks
e Subtrees

| Kernel is similarity function on pairs of graphs
e Count the number of common substructures

| Use graph kernels with SVMs
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Patchy: Learning CNNs for Graphs
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Patchy: Learning CNNs for Graphs
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Patchy: Learning CNNs for Graphs
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Patchy: Learning CNNs for Graphs
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Patchy: Learning CNNs for Graphs
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Patchy: Learning CNNs for Graphs
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Patchy: Learning CNNs for Graphs

Convolutional architecture
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e normalized nelghborhoods serve as receptive fields
e node and edge attributes correspond to channels
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Node Sequence Selection

| We use centrality measures to generate the node sequences
| Nodes with similar structural roles are aligned across graphs
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node sequence selection

A: Betweenness centrality B: Closeness
centrality
C: Eigenvector centrality = D: Degree centrality
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Neighborhood Assembly

| Simple breadth-first expansion until at least kK nodes added,

or no additional nodes to add
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Graph Normalization Problem

I Nodes of any two graphs should have similar position in the
adjacency matrices iff their structural roles are similar

adjacency matrices under labeling

B

arg minEg HdA (AE(G)aAE(G’)) —dg(G, G,)H

. & |
labeling distance measures in
method matrix and graph space
(centrality etc.) normalization

| Result: For several distance measure pairs
it is possible to efficiently compare labeling
methods without supervision

| Example: ||A - A’||, and edit distance
on graphs
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Graph Normalization
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Graph Normalization
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Graph Normalization

2 —06)
© @
1

-4 Canonicalization (break ties)

)
S

—O
i
7 —0—®
< Centrality measures, etc.
(—3
V&
700
-~ Distance to root node

Learning Convolutional Neural Networks for Graphs NEC




Computational Complexity

| At most /inear in number of input graphs

| At most guadratic in number of nodes for each graph
(depends on maximal node degree and centrality measure)
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Convolutional Architecture

f field size: 4, stride: 4, filters: M ‘.‘
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Convolutional Architecture

field size: 4, stride: 4, filters: M “fi~
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Convolutional Architecture

field size: 3, stride: 1, N filters <~
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Convolutional Architecture

‘.‘ field size: 3, stride: 1, N filters <~
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field size: 3, stride: 1, N filters <~
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Experiments - Graph Classification

| Finite collection of graphs and their class labels

class =1 class = 0 class =1

e Nodes of any two graphs are not necessarily in correspondence
e Nodes and edges may have attributes (discrete and continuous)

| Learn a function from graphs to class labels

class| @gg ]=>
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Experiments - Convolutional Architecture

softmax
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flatten, dense 128 units 4.*

field size: 10, stride: 1, filters: 8 i~
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Classification Datasets

MUTAG: Nitro compounds where classes indicate mutagenic
effect on a bacterium (Salmonella Typhimurium)

PTC: Chemical compounds where classes indicate
carcinogenicity for male and female rats

NCI: Chemical compounds where classes indicate activity
against non-small cell lung cancer and ovarian cancer cell lines
D&D: Protein structures where classes indicate whether
structure is an enzyme or not
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Experiments - Graph Classification

I Q: How efficient and effective compared to graph kernels?
| Apply Patchy to typical graph classification benchmark data

Data set MUTAG PET NCI1 PROTEIN
Max 28 109 111 620
Avg 17.93 25.56 29.87 39.06
Graphs 188 344 4110 1113
SP [7] 85.79 &+ 2.51 58.53 1-2.55 13.00 1 0.51 75.07 £ 0.54
RW [17] 83.68 £ 1.66 57.26 1 1.30 > J days 74.22 4 0.42
GK [38] 81.58 L 2.11 A7.32:11.13 62.28 1+ 0.29 T1.67 -1 0.55
WL [39] 80.72 + 3.00 (5s) | 56.97 £2.01 (30s) | 80.22 £ 0.51 (375s 72.92 £+ 0.56 (143s)
PSCN k=5 o= L 8 S s £ 72.80 £+ 2.06 (5H9s) : ' ;
PSCN k=10 J 88.95+ 4.37 (3s 76.34 + 1.68 (76s)

Data set | GK [38] | DGK [45] | PSCN k=10

COLIAB | 72844028 | 73.00-:-0.25 | 72601+ 2:15

IMDB-B 65.87 +0.98 | 66.96 +=0.56 | 71.00 £+ 2.29

IMDB-M | 43.89 £ 0.38 | 44.55 4 0.52 gt

RE-B 77.34 +£0.18 | 78.04 +0.39 § 86.30 + 1.58

RE-M5k 41.01 +£0.17 | 41.27+0.18 § 49.10+0.70

RE-MI10k | 31.82+0.08 | 32.224+0.10 g 41.32 4+ 0.42
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Experiments - Visualization

| Q: What do learned edge filters look like?
| Restricted Boltzmann machine applied to graphs
| Receptive field size of hidden layer: 9
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small instances of graphs weights of hidden nodes

Learning Convolutional Neural Networks for Graphs NEC




Discussion

| Pros:
e Graph kernel design not required
e Outperforms graph kernels on several datasets (speed and accuracy)
e Incorporates node and edge features (discrete and continuous)
e Supports visualizations (graph motifs, etc.)

| Cons:

e Prone to overfitting on smaller data sets (graph kernel benchmarks)
e Shift from designing graph kernels to tuning hyperparameters
e Graph normalization not part of learning

code to be released: patchy.neclab.eu
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